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Abstract

We report on a technique for modelling biological systems based on the ntcc calculus, a model
of concurrency where systems are specified by means of constraints (i.e., formulae in logic). We
show that the ability of ntcc to express partial information, concurrency, non-determinism and
timed behaviour allows us to neatly model and simulate biochemical reactions networks. Based on
this technique, we introduce BioWays, a software tool for the quantitative modelling and analysis
of biological systems. We show the applicability of the tool in the context of two well studied
biological systems: the glycogen breakdown pathway and the HIV life cycle.
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1 Introduction

Computational biology aims at using the typical methods of computer science
for integrating the existing knowledge concerning individual genes, proteins
and molecules and to investigate the behaviour and relationships among the
various elements composing a biological system. A technique widely used
in computational biology consists in the construction of executable models
(EMs) [16] describing the studied systems as computer programs. EMs are
typically specified through formal languages based either on process algebras
(e.g. [10,12,11,14,3]) or other formalisms such as logic [9] or rewriting logic
[15], constraint programming [21,13] or Petri nets [7]. These models can be
used for analysing either static, qualitative properties of biological systems [8]
or their quantitative, dynamical behaviour. In the latter case, for taking into
account dynamical aspects, the evolution of the model is driven by algorithms
that, given the state of the system at one initial time t0, allow to compute the
state of the system at a subsequent time t. Depending on the chosen algorithm
the model results to be stochastic or deterministic.

Recently there has been a significant interest in (executable) discrete
stochastic (DS) models of biological systems, mainly because experimental
data are providing evidences that stochasticity arising at the molecular level
plays an important role in determining the overall behaviour of living organ-
isms [29]. In DS models the evolution of the system is driven by a stochastic
algorithm which computes the probability of state transitions according to
given probability density functions (PDFs). Biochemical reactions are often
modelled through DS approaches, typically following the proposal of some au-
thors (e.g. Bartholomay[4]) that consists in describing the reaction system in
hand as a discrete-state continuous-time Markov process (DCMP). Gillespie’s
Stochastic Simulation Algorithm (SSA) [18], based on previous proposals (e.g.
[4]), is the most widespread algorithm used for implementing DS simulations
of biological systems. Gillespie’s SSA requires that some hypotheses are sat-
isfied, namely solutions are well stirred and in thermal equilibrium and, more
importantly, it holds only for elementary chemical reactions i.e. those reac-
tions occurring in one reactive event. Even though it has ben shown that the
SSA can work besides the prescribed scope of applicability as proved by the
success of various stochastic models against experimental data, it is difficult
to describe biochemical systems in terms of elementary reactions: often there
is an incomplete knowledge of the full set of elementary reactions and meso-
scopic or macroscopic transformations are the only observable ones. Most
commonly this problem is circumvented abstracting away the not observable
elementary steps, lumping them in a single reaction event modelled as a single
“Markov jump” with the waiting time τ sampled from a negative exponential
distribution depending on an overall rate constant. However abstractions usu-
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ally introduce approximations in the behaviour of the models whose impact
is not easy to evaluate or estimate, as noticed by Gillespie in [30] for enzy-
matically catalysed reactions. One crucial point in this abstraction approach
concerns the modelling of the time needed for a reaction to occur: even though
the elementary reactions underlying a given biochemical process can be mod-
elled as a DCMP (and, thus, with waiting times distributed according to a
negative exponential PDF) on a mesoscopic or macroscopic scale the process
may exhibit different dynamics such as non-Markovian behaviours, as pointed
out also in [24] and [10] and shown by various experimental evidences, e.g.
[33]. These arguments suggest the need of proposing modelling approaches
embedding a more general notion of transition times allowing to describe the
observed time courses of biological phenomena without subsuming a memory-
less process. Various approaches have been proposed for addressing this issue.
The work in [7] proposes an extension for Petri Nets and in [24] for the Beta
Workbench in which transition times can be sampled from non-exponential
PDFs. BioPEPAd [10] allows to add deterministic delays to the duration of a
reaction.

In this paper we propose an approach based on the ntcc calculus [26], a
temporal extension of CCP [31], designed for specifying and verifying timed
and reactive systems. In particular we report on BioWays, a PHP based
application designed for specifying and executing ntcc models of biological
systems. As we shall show, ntcc offers several advantages in the modelling
of biochemical reaction systems. (1) the timed nature of the calculus allows
us to faithfully model temporal information about interactions (e.g., whether
an unexpected interaction actually happens), information about the temporal
occurrence of an event (e.g., when a binding occurs), and information about
the relative velocities of reactions (e.g., the duration of an interaction) thus
allowing to take into account non-markovian dynamics. (2) Constraints in
ntcc provide a compact representation of the state of the system, (e.g., the
concentration of the components along the time). (3) ntcc models can be
seen as executable: ntcc processes can be straightforwardly executed and
the evolution of the system can be observed. Finally, (4) the ntcc calculus is
equipped with an underlying temporal logic that allows to formally specify and
verify properties of the model. Through two working examples we will show
how our framework can be used for modelling biological systems. The use of
ntcc for modelling biological systems was proposed also by other authors (see
e.g., [2,20,1] ). The contribution of this paper is twofold: on the one hand we
present a systematic discussion of the main features that makes ntcc suitable
for modelling biological systems; on the other hand we present a working
software designed for simulating biological phenomena enjoying the features
of the ntcc based approach.

The rest of the paper is structured as follows: In Section 2 we present
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the timed constraint language that we use for modelling. In Section 3 we
present our software tool (BioWays) on two examples (the glycogen breakdown
pathway and the HIV life cycle). Section 4 draws some conclusions.

2 Timed Concurrent Constraint Programming

Process calculi such as CCS and the π-calculus among several others have
arisen as mathematical formalisms to model and reason about concurrent sys-
tems. They treat concurrent processes much like the λ-calculus treats com-
putable functions. They then provide a language in which the structure of
terms represents the structure of processes together with an operational se-
mantics to represent computational steps.

In this paper we shall use as modelling language Concurrent Constraint
Programming (CCP) [31], a model for concurrency that combines the tradi-
tional operational view of process calculi with a declarative view based on
logic. This allows CCP to benefit from the large set of reasoning techniques
of both process calculi and logic [31,26].

Agents in CCP interact with each other by telling and asking information
represented as constraints to a global store. Constraints (e.g., x > 42) can be
thought of as formulae in a first-order language and they represent (partial)
information about the variables of the system. Partial must be understood
here as the fact that constraints do not necessarily determine completely the
values of the variables.

The basic constructs in CCP are the tell agent tell(c) that adds the con-
straint c (via logical conjunction) to the store, thus making it available to the
other processes; and the ask process when c do P that queries if the cur-
rent store d can entail (deduce) the guard c, written d |= c; if so, it behaves
like P . Otherwise it remains blocked until more information is added. This
way, ask processes define a synchronisation mechanism based on entailment
of constraints.

CCP features also constructs for declaring local variables as in (local x)P
and for executing processes in parallel as in P ‖ Q.

The ntcc calculus [26] extends CCP with the notion of discrete time-units
to model timed and reactive systems. Roughly speaking, a CCP-like process
is executed in a time-unit. When the resting point is reached, i.e., no further
evolution is possible, the store is output and a new time-unit is created to
later execute the continuation of the process. In order to specify when a
process must be executed, the CCP language of processes is extended with
operators such as nextP that delays the execution of P one time-unit; !P
that executes P in all the time-units; and unless c nextP that executes P in
the next time-unit if c cannot be deduced from the store. Furthermore, ntcc
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introduces non-deterministic choices of the form
∑
i∈I

when ci do Pi where one

Pi is chosen for execution if the guard ci can be entailed from the store. When
this happens, the other alternatives are precluded from execution.

The notion of constraint and the language of processes in ntcc are expres-
sive enough to specify the biological behaviour we are interested in modelling:

• Quantitative information can be naturally expressed by means of con-
straints. For instance x > y states that the concentration of x is greater
than that of y.

• Constraints provide also an elegant mechanism to represent partial infor-
mation. For instance, x > 42 gives some information regarding the concen-
tration of x but it does not give a specific value for it. This can be helpful
when some components of the system are not well known or we do not have
enough quantitative information about them.

• Synchronisation of ask processes via constraint entailment allows us to trig-
ger actions when some information can be derived from the system. For
instance, it is natural to express in the language that a given reaction oc-
curs only when certain component is present in the system.

• The ability of CCP to compose models (i.e., components) by parallel com-
position leads to a robust modelling strategy: we can study separately com-
ponents of a system and then, observe the behaviour of the whole system.

• Timed operators as nextP allows us to describe actions (more precisely
reaction in the biological context) that can take several time-units to be
completed.

• Furthermore, since ntcc is a model of concurrency, we can use several rea-
soning techniques to reason about the models we build. For instance, oper-
ational and denotational semantics, model checking techniques and logical
interpretation of processes [26].

2.1 BioWays: a ntcc model of biochemical reactions

The tool that we propose here models biological systems by means of a set of
stoichiometric equations of the form

a1X1 + ...anXn 99K b1Y1...+ bmYm (1)

The constants a1, ..., an and b1, ..., bm are the stoichiometric coefficients.
Therefore, a1X1, a2X2, ..., anXn are reactants that interact (and are consumed)
yielding to the products b1Y1, b2Y2, ..., bmYm.

In order to represent the reaction above, we model in ntcc each type of
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molecule as a variable (e.g., Xi) and Equation (1) as the process

eq-proc = when X1 ≥ a1 ∧ ... ∧Xn ≥ an do

next (t)tell(Y1 = Y ′1 + b1 ∧ ... ∧ Ym = Y ′m + bm) ‖

next tell(X1 = X ′1 − a1 ∧ ... ∧Xn = X ′n − an)

Intuitively, when the reactants are available, they are consumed and the right
hand components are produced t time units later. Hence, the kinetic param-
eter t allows us to represent the speed of reactions.

Assume now a set of n stoichiometric equations. We need a process that
chooses one of the reaction to occur at a given time-unit. This can be done by
composing each process eq-proci in a non-deterministic choice of the form:∑

i∈1..n

eq-proci

If the propensity of each reaction to occur is available, we replace the non-
deterministic choice with a probabilistic one. Then, reactions are chosen by
following the assigned probabilities.

Summing up, in BioWays it is possible to express two important features
of biochemical reactions: the propensity (i.e. the probability of occurring)
and the duration, i.e. the time steps needed for the products to appear in the
system.

The model as a runnable specification

Processes in ntcc can be seen as runnable specifications of a system: the
model can be directly simulated by using the operational semantics (SOS) of
the calculus. The SOS dictates how processes evolve along time units. For
instance, a process tell(c) evolves into skip (the inactive process) by adding
c to the current store d:

RTELL 〈tell(c), d〉 −→ 〈skip, d ∧ c〉

Similarly, for the rest of the processes. The reader may refer [26] for a
complete description of SOS rules of ntcc.

Following the operational rules of the calculus, we built an interpreter of
ntcc on top of the Mozart programming language (http://www.mozart-oz.
org/). Central to this implementation is the Mozart abstraction computation
spaces (CS). A CS is a constraint store where multiple threads can access (con-
currently) the shared variables and impose constraints on them. In Mozart,
different constraint systems are available. Here we used the Finite Domain
Constraint System (FD). In FD variables are assumed to range over finite
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domains and, in addition to equality, we may have predicates that restrict the
possible values of a variable to some finite set as in x > y. We thus model
ntcc processes as threads that post and query constraint in the CS until a
resting point is reached. When this happens, we output the final store that
contains the information about the variables of the model. This gives a simple
way to “execute” the ntcc model and observe the behaviour of the modelled
system in each time-unit.

In order to make available the tool on internet, we embedded the ntcc

interpreter into Bioways, a PHP based application freely available at http:

//escher.puj.edu.co/~michellrad/bioways_web/. Users can build models
of biological systems in Bioways through a wizard that comprises the following
steps:

(i) System’s variables: Define the reacting species and their initial amount.

(ii) System’s reactions: Define the type of reaction that describes how
molecules interact.

(iii) Propensity of reactions: Define the probability of each reaction to occur.

(iv) Duration of reactions: Define the duration of each type of interaction.

(v) Number of time-units: Define the total time of the simulation (time steps)
for generating and simulating the system.

The following section presents two examples of the use of Bioways in the
modelling of biological systems.

3 Modeling

In this section we outline the use of our toolkit through the specification and
simulation of two well studied biological scenarios: (i) the signaling pathway
leading to the glycogen breakdown into glucose 1-phosphate, and (ii) the life
cycle of HIV (Human immunodeficiency virus).

3.1 The glycogen breakdown pathway: A model of intracellular processes

In higher organisms such as mammals glycogen is stored in the liver as a
reservoir of glucose. When the concentration of glucose in the blood is low
the α cells of the pancreas secrete glucagon, a polypeptidic hormone which
triggers the process of glycogen breakdown (Glycogenolysis). This process
is started by the interaction of glucagon with its receptor expressed by liver
cells [6]. Once the glucagon receptor embedded in the cell membrane binds
its ligand, it activates a signal transduction pathway inside the cell leading
to a glycogenolysis. More precisely, the signal transduction system for the
glycogen degradation pathway is modular and is made of three type of pro-
teins: (i) a receptor, (ii) a transducer, and (iii) an effector. Glucagon recog-
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nises and binds to its receptor causing an allosteric change [17]. Respond-
ing to this structural modification, the transducer (a G-Protein – Guanine
nucleotide-binding protein– located in the inner side of the cell membrane)
interacts with the hormone-receptor complex stimulating a reaction in which
a GDP (Guanosine diphosphate) molecule bound to the G-Protein is replaced
by GTP (Guanosine-5’-triphosphate). This reaction activates the G-Protein,
which then interacts with the effector, the enzyme adenylyl cyclase. This pro-
tein catalyses the conversion of ATP (Adenosine-5’-triphosphate) to cAMP
(Cyclic adenosine monophosphate), an intracellular second messenger. Thus,
the binding of glucagon at the cell-surface stimulates the synthesis of a second
messenger inside the cell, which in turn stimulates a metabolic response (see
Figure 1). The first interaction triggers a cascade of biochemical reactions in
a signal transduction pathway through the activation of G-Proteins [6].

We apply a compositional approach to model the signalling pathway above
by adding iteratively biochemical interactions. This is particularly straight-
forward in our framework: new information can be added to the system by
posting constraints and the subsystems can be easily composed by sharing
variables. Compositionality allows to build complex biological models combin-
ing partial information coming from different sources. This result is certainly
more difficult to achieve, for example, in models based on ordinary differen-
tial equations (ODE) because the large number of parameters needed and,
in general, ODE are not compositional. On the contrary, the idea of partial
information represented as constraints makes CCP appropriate for this aim.

Note that our technique allows the description of a biological scenario at
different levels of abstraction. For example, in a previous work [21] based
on our method we considered the interactions between the transmembrane
receptor and G-Proteins in three different environments (extracellular, trans-
membrane, and intracellular). Now, we expand this perspective by zooming
into the intracellular domain with the aim to analyse the system’s behaviour
at this level. This should allow us to gain a better understanding of the system
dynamics in response to the presence or absence of the ligand molecule.

We described the glycogen breakdown pathway through a set of algebraic
equations resembling [13,21]. In this way we obtained a simple description
of the system by means of a stoichiometric-like formulation of the reactions.
We considered the actions of binding, dissociation, complex formation, and
transfer of molecule groups.

When taking into account a biochemical system we emphasise on the in-
teractions between different species during time. The occurrence of reactions
during a time unit, expressed by their reaction rates, sets the behaviour of the
system. Our representation allows to compute the current concentration of
the components according to the concentration of them in the previous time
unit. Additionally, we can set a parameter t that stands the duration for the
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Fig. 1. A reaction pathway for the glycogen breakdown. Taken from [5,23].

reaction to occur. Furthermore, we can assign a probabilistic execution for
the reactions (in the examples presented here we assume the same probability
for each reaction).

We then have a simple and scalable representation of the system based on
a set of biochemical reactions involving a single transition between reactants
and products, with rate constants for each reaction and initial concentrations
of each species. Given the fact that we are setting a system of coupled re-
actions into a concurrent constraint approach, as a first approximation we
were able to explore the system under different initial conditions comparable
with the literature. Information about rate constants and the amount of sys-
tem molecules were obtained from literature (see for instance [25,34]). The
complete set of this parameters is reported in Appendix B as well as the full
specification of the model.
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Fig. 2. Temporal trace of cAMP involved in the glycogen breakdown cascade. Can be observed
an increased formation of cAMP in presence of lower values of concentrations and rate constants,
particularly in terms of the extracellular ligand. (For further details about the different ‘modes’
or configurations used for simulations, please see B in Appendix)

Our simulations show that the behaviour of our model is consistent with
that of the real counterpart. In particular, in liver cells, in response to the
hormone glucagon, the transmembrane protein adenylyl cyclase is stimulated
and catalyses the conversion of ATP into cAMP , an intracellular second
messenger (For further details, see Figure B.1 in Appendix). This step of the
signal transduction pathway is called an amplification process of the signal
given that a small amount of glucagon is capable to produce an increased
amount of cAMP (see Figure 2).

Throughout the signal cascade, cAMP is capable to activate the enzyme
protein kinase A (cAMP dependent protein kinase (cAPK)). Thus, it is ob-
served high levels of cAPK in the system (see Figure 3a). This environment
is a requirement for the activation of others intracellular signalling molecules
(see EQ8-EQ12.1 in Figure B.1) and to promote the degradation of glycogen
into molecules of glucose 1-phosphate (see Figure 3b). Therefore, the process-
ing of information from the external environment to the intracellular medium,
starts at the level of the cell membrane through the binding of the hormone
glucagon to its respective receptor in a ‘physical interaction’ followed by a set
of biochemical reactions (transduction pathway) in which the initial stimulus
is greatly amplified.

Our representation of the interactions is in agreement with [32]: the follow-
ing enzymes must be both present and available for activation: glycogen phos-
phorylase kinase and glycogen phosphorylase, as well as protein kinase A must
be available for activation by cAMP . The enzyme adenylyl cyclase must be
present according with [27]. In line with [32,27] in almost all species the activ-
ity of glycogen synthase increases rapidly while glycogen phosphorylase remains
low, and the ratio of the active forms of glycogen phosphorylase and glycogen
synthase might be of major importance in the regulation of metabolism. Our
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(a) (b)

Fig. 3. 3a Temporal trace for enzyme protein kinase A (cAMP dependent protein kinase (cAPK))
and 3b glucose 1-phosphate.

simulations (see Figure 4) reproduce this behaviour: enzyme glycogen syn-
thase (activated) increases in an overshoot and after decreases and remains
in a constant level (see Figure 4a) especially when is taken the configuration
‘medlimMode2’ to perform the simulations (see Figure B.4, B.5 in Appendix)
where the mid values of concentrations and rate constants of the molecules
and reactions in the network are taken. While glycogen phosphorylase (inacti-
vated) decreases to lower levels of concentration (see Figure 4b) when is taken
the configuration ‘medlimMode3’ to perform the simulations (see Figure B.5,
B.6 in Appendix). Moreover we can notice that the ratio and behaviour of the
inactive/active forms of glycogen phosphorylase and glycogen synthase affects
not only the degradation of glycogen to glucose 1-phosphate (the active form
of the glycogen phosphorylase degrades glycogen, see EQ11-11.1 in B.6) but
also the glycogen synthesis (the active form of glycogen synthase catalyzes the
formation of glycogen polymers, see EQ12-12.1 in B.6).

These results allow to gain some insight in the regulation of glycogenolysis
by using a toolkit that permits the observation of the system when parameters
are adjusted, built on a powerful model for concurrency that allows the specifi-
cation of reactive systems where: i) the environment reacts continuously with
the system; ii) the system evolves in discrete time units; iii) some components
may not be fully specified (partial information); and iv) the components can
react accordingly to stochastic laws.

3.2 The HIV life cycle: A representation based on biochemical interactions

Since the discovery of the human immunodeficiency virus (HIV), the etiologic
agent of the acquired immune deficiency syndrome (AIDS), scientists have
focused in understanding the dynamics and details of the HIV life cycle in
order to develop efficient antiviral therapies. In the context of computational
biology the dynamics of cell-virus interactions have traditionally been investi-
gated through both ODEs and EMs. In the latter case the proposed modelling
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(a) (b)

Fig. 4. 4a Temporal trace for proteins glycogen synthase (active form) and 4b glycogen phosphorylase
(inactive form).

approaches mainly focus on membrane interactions as e.g. in [11]. We will
instead use BioWays for building a model of the HIV infection cycle shifting
the focus on quantitative issues. Our aim is to track the time course of a set
of molecules during the various steps of the infection cycle. Our investigation
is driven by well known experimental observations describing the progres-
sion throughout the infection cycle as conditioned by the presence of certain
molecules in each phase. In other words, each stage of the infection cycle is
characterised by a precise set of molecules which are necessary for bootstrap-
ping the following step. Our interest in modelling the timing of this process
reflects one research strategy in drug discovery, aiming at blocking the infec-
tion cycle by interfering with the bootstrapping molecules. Our framework
results particularly suited for our purpose. Indeed, we enjoyed the parallel
composition of ntcc to progressively build our model integrating information
coming from different sources, as well as the possibility of specifying explicitly
the duration of each reaction. The various steps of the HIV infection process
can be described as follows (see [19] for a detailed description and Figure 5a):

• Binding and Fusion: HIV binds to a specific receptor (CD4) and one of two
co-receptors on the surface of a CD4+ T-lymphocyte and fuses with the
host cell releasing its RNA genome.

• Reverse Transcription: reverse transcriptase converts the single-stranded
HIV RNA to double-stranded HIV DNA.

• Integration: the HIV DNA enters the host cell’s nucleus where it may remain
inactive producing few or no new copies of HIV.

• Assembly: new virus particles are assembled in the host cell.

• Budding: the newly assembled virus pushes out (”buds”) from the host cell.

Using BioWays we described the interactions amongst the molecules of both
the virus and the host cell involved in the infection cycle, specifying for each
reaction its duration and the initial amount of reactants. The equation com-
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(a) (b)

Fig. 5. 5a Steps of the replication [28] and 5b the time course of molecules concentration involved
in the HIV life cycle.

posing the model and the chosen parameters are reported in the Appendix A.
Simulating the model we obtained the time course of the modelled molecules
during the life cycle. A sketch of the obtained results is reported in Figure 5b.

Analysing the outputs of our simulations, we correctly identified a set of
molecules whose presence is a necessary condition for proceeding throughout
each step of the infection cycle. Consistently with experimental data, for in-
stance, we found that in our model the presence of the complex [gp120]gp41
is necessary for both the Binding and Fusion and the Budding phases. Inter-
estingly, drugs called Fusion Inhibitors, such as Maraviroc, block the fusion
phase interfering with the binding of the host-cell co-receptor ccr5 and the
complex [[gp120]gp41]cd4 thus avoiding the HIV life cycle to continue.

4 Conclusions and future work

We have defined a technique based on a Temporal extension of Concurrent
Constraint Programming (CCP) for modelling biological systems that allows
to represent straightforwardly transition times and incomplete information.
In this paper we have presented also a software tool (BioWays) for modelling
and analysis of biochemical interaction networks. Through two working ex-
amples we have shown how our method can be used for gaining insights on
the dynamics of biological phenomena.

We are currently developing an extension of our toolkit allowing to man-
age also stochastic waiting times distributed according with non-exponential
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probability distribution functions. This should allow to describe a larger set
of biological scenarios.
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A HIV infection cycle

The HIV infection cycle comprises the follows phases:

The process of fusion.

1gp120 + 1gp41→ 1[gp120]gp41

1[gp120]gp41 + 1cd4→ 1[[gp120]gp41]cd4

1[[gp120]gp41]cd4 + 1ccr5→ 1[[[gp120]gp41]cd4]ccr5

1[[[gp120]gp41]cd4]ccr5→ 1ectgp41

The process of reverse
transcription and inte-
gration.

1ectgp41→ 2cpd

1cpd→ 1rT + 1int+ 1prt

1cpd→ 2sRNA

2sRNA+ 1rT → 1dDNA

1dADN + 1int→ 1[dADN ]int

The process of tran-
scription.

1[dDNA]int+ 1gnm→ 1[[dDNA]int]gnm

1[[dDNA]int]gnm→ 1vDNA

1vDNA→ 1mRNAHIV

The process of trans-
duction, division, as-
sembly and releasing.

1mRNAHIV → 1pV IH

1prt+ 1pV IH → 1[prt]pV IH

1[prt]pV IH → 4prtv

1prtv → 1rTv

1prtv → 1prtvr

1prtv → 1intv

1prtv → 2sARNv

1rTv + 1prtvr + 1intv → 1cpdv

2sARNv → 1cpdv

2cpdv → 1nV irus

In the simulation, the rates were all set to one, all reactions have the same
probability to occur, the initial concentration are 100 copies for ccr5, cd4,
gp120, gp41, and 0 for complexes.
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B Glycogen breakdown pathway: the model in detail

Here we present a more detailed description of the simulation parameters
and the input data such as the kinetic constants for the reactions, the molar
concentration of the species and the encoding in the BioWays software tool.
For each mode of simulation, is used the lower, medium and upper limit of
the molar concentration of each variable as well as for the kinetic constant of
the reactions according with the available scientific literature.

Fig. B.1. A model of the control system of the intracellular processes in the signaling pathway of
the glycogen breakdown (Part1)
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Fig. B.2. A model of the control system of the intracellular processes in the signaling pathway of
the glycogen breakdown (Part2)
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Fig. B.3. A model of the control system of the intracellular processes in the signaling pathway
of the glycogen breakdown (Part3) . Some of the parameters taken from (15,+)[22], (16, ∗)[25],
(17)[34]
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Fig. B.4. A model of the control system of the intracellular processes in the signaling pathway of
the glycogen breakdown (Part4)

20



Chiarugi et al.

Fig. B.5. A model of the control system of the intracellular processes in the signaling pathway of
the glycogen breakdown (Part5)
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Fig. B.6. A model of the control system of the intracellular processes in the signaling pathway of
the glycogen breakdown (Part6)
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